

CLA Deep Dive

Subutai Ahmad subutai@numenta.org

Lots Of Stuff We Could Talk About

But, We Can't Cover It All

Sample CLA "Quiz" Questions

- Is an untrained CLA spatial pooler just a "random hash"? Why or why not? What happens to the output of the spatial pooler if you randomly change one bit in the input?
- When creating an SDR, what's the difference between picking "5 columns out of 50" vs "50 out of 500"? Both have 10% sparsity.
- How do the SDR representations of input A and input B, compare with input A overlapped with B?
- Suppose a temporal pooler has learned the following two sequences: ABCDE and ABCDF. You now present the sequence ABCD what will be predicted next? What is the representation of the temporal pooler at this point in time?
- Suppose a temporal pooler has only learned the following two sequences: ABCDE and FGCDH. You now present the sequence FGCD - what will be predicted next? Suppose you present the sequence CD - what will be predicted next? What is the representation of the temporal pooler at this point in time.

Agenda

- One SDR property in depth
 - 15 minutes, slides + whiteboard
 - Key to understanding temporal predictions
 - Key to getting a hierarchy working
 - Key to invariances
 - Will help you understand CLA parameters and numbers better
 - Not covered in depth in talks or whitepaper
- Open discussion and questions about CLA

Sparse Distributed Representations (SDRs)

- Many bits (thousands)
- Few active
- Each bit has semantic meaning

Dense Representations

- Few bits (8 to 128)
- All combinations of 1's and 0's
- Example: 8 bit ASCII
- Bits have no inherent meaning

SDR Properties

1) Compare:

shared bits = semantic similarity

2%

20%

ON bits should be "reasonably high"

columns = 50

But, # of patterns at a time is low

columns = 50

Answer: just increase number of columns!

Superposition of patterns

- Through superposition you can store completely separate patterns in the same vector with minimal chance of false positives
- Two variables: # ON bits, # columns
 - ON bits / columns = sparsity
- Sparsity controls how many simultaneous patterns you can store
 - Constraints:
 - Need to have "reasonable" number of ON bits
 - Need a high number of dimensions (columns)
 - Very low sparsity (e.g. 0.01%)
 - Can store tons of patterns but number of columns must be high (e.g. 50,000)
- In NuPIC, we've chosen 40 out of 2048

- Code exercise: figure out how many random patterns we can superimpose

Superposition and the Temporal Pooler

Superposition and hierarchy

Superposition and hierarchy

Output before temporal pooling*

Output after learning temporal pooling*

- Output of temporal pooler is activity on all 10,000 cells
- These 10,000 cells are input to next level's spatial pooler

- Temporal pooling causes cells to be active over longer periods of time
- Overlapping activity leads to temporal stability of the next spatial pooler

Agenda

- One SDR property in depth
 - 15 minutes, slides + whiteboard
 - Key to understanding temporal predictions
 - Key to getting a hierarchy working
 - Key to invariances
 - Will help you understand CLA parameters and numbers better
 - Not covered in depth in talks or whitepaper
- Open discussion and questions about CLA

